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Abstract 

High-throughput sequencing technologies have provided an unprecedented 

opportunity to study the different evolutionary forces that have shaped present-day 

patterns of genetic diversity, with important implications for many directions in plant 

biology research. To manage such massive quantities of sequencing data, biologists 

however need new additional skills in informatics and statistics. In this chapter, our 

objective is to introduce population genomics methods to beginners following a 

learning-by-doing strategy in order to help the reader to analyze the sequencing data 

by themselves. Conducted analyses cover several main area of evolutionary biology, 

such as an initial description of the evolutionary history of a given species or the 

identification of genes targeted by natural or artificial selection. In addition to the 

practical advices, we performed re-analyses of two cases studies with different kind of 

data: a domesticated cereal (African rice) and a non-domesticated tree species (sessile 

oak). All the code needed to replicate this work is publicly available on github 

(https://github.com/ThibaultLeroyFr/Intro2PopGenomics/). 
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1. Introduction 

  

Population genetics is an increasingly important discipline at the interface 

between genetics and evolutionary biology focusing on the analysis of DNA variation 

and evolution across different loci and populations. Population genetic concepts help 



to understand the contribution of key evolutionary forces (mutation, migration, genetic 

drift and natural selection) to the observable present-day distribution of genetic 

diversity. Prior to describe how various important and long-standing questions in plant 

biology can be addressed using population genetic concepts (for plant breeding, plant 

conservation biology, plant ecology for example), it is important to notice that a major 

shift occurred in this discipline. Over the last decade, cost-effective and high-

throughput sequencing methods have accelerated and amplified the interest for 

population genetics by taking advantage of large-scale comparisons of DNA 

sequences or large sets of Single Nucleotide Polymorphisms (SNPs) to better 

understand the contribution of the different evolutionary forces to the present-day 

DNA variation, leading to the emergence of a closely-related field, called population 

genomics ([1] for a historical retrospective).  

Biologists have now access to very large amounts of sequencing data. This 

change makes new investigations possible, but also induces a considerable shift in the 

professional skills needed to generate (wet lab) or analyse the data (dry lab). Indeed, 

large-scale sequencing projects with several hundred or thousands of samples 

sequenced have considerably shifted the limits in plant research (e.g. 3,000 Rice 

Genome project, [2]; Arabidopsis thaliana 1001 Genomes Project, [3]). These new 

investigations require additional skills in biology, especially regarding the 

bioinformatic analysis of the sequencing data (e.g. a strong experience in using 

command-line versions and high-performance computing clusters, a proficiency in 

scripting or programming, a solid competence in statistical methods) to be able to 

handle such big genomic data projects. This greater transdisciplinarity between 

genetics, informatics and statistics, can make access to population genetics more 

difficult. In this chapter, our main objective is to tackle this issue by providing a 

simple and step-by-step guide. Unlike many great academic writings in the field (e.g. 

[4]), this chapter is not interested at covering the basis of the theory of evolution, but 

rather at introducing population genomics methods to beginners following a 

“learning-by-doing” strategy. All the genomic data we used are publicly available, as 

well as our scripts (see Materials below).  

Population genetics is a broad discipline and we do not claim to be exhaustive. 

Our objective is rather to introduce population genomics by focusing on some key 

analyses: the analysis of population structure, the inference of population splits and 

exchanges, and the detection of footprints of natural or artificial selection. We hope 

that some plant biologists, including students, will discover the benefits of population 

genomics analyses, including its applications for breeding and conservation, despite 

the fact that this discipline is, rightly or wrongly, reputed to be particularly difficult 

and demanding.  

 

 



2. Materials  

 

 

This tutorial requires the use of command-line software (preferentially on high-

performance computing clusters) and some basic knowledge about Linux and bash 

commands (e.g. cd, mkdir, cp, paste, awk, grep). There are plenty of good tutorials 

available on Internet to learn these aspects in a couple of hours, such as the Ryan 

Chadwick’s website (https://ryanstutorials.net). 

 

Due to space constrains, the code and commands are not described in this book 

chapter. However, all our scripts (bash, python and R) are freely available on github: 

https://github.com/ThibaultLeroyFr/Intro2PopGenomics/ 

 

This code repository is therefore an essential and complementary part of this chapter.  

 

These scripts require different softwares: 

1. BayPass: 

http://www1.montpellier.inra.fr/CBGP/software/baypass/download.html 

2. BWA mem: http://bio-bwa.sourceforge.net/ 

3. Blast+: 

https://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE_TYPE=BlastDocs&DOC_TYPE

=Download 

4. Bowtie2: http://bowtie-bio.sourceforge.net/bowtie2/index.shtml 

5. FastStructure: https://rajanil.github.io/fastStructure/ 

6. GATK: https://software.broadinstitute.org/gatk/download/ 

7. Plink: https://www.cog-genomics.org/plink2/ 

8. Picard: https://broadinstitute.github.io/picard/ 

9. R https://cran.r-project.org/  

(Rstudio is not mandatory but can be useful: 

https://www.rstudio.com/products/rstudio/download/) 

including R packages: 

- ape: https://cran.r-project.org/web/packages/ape/index.html 

- circlize: https://cran.r-project.org/web/packages/circlize/index.html 

- ggplot2: https://cran.r-project.org/web/packages/ggplot2/index.html 

- pcadapt: https://cran.r-project.org/web/packages/pcadapt/index.html 

- poolfstat: https://cran.r-project.org/web/packages/poolfstat/index.html 

- reshape2: https://cran.r-project.org/web/packages/reshape2/index.html 

10. SNPRelate: 

https://bioconductor.org/packages/release/bioc/html/SNPRelate.html/ 

11. SAMtools: http://samtools.sourceforge.net/ 



12. Seq_stat to compute nucleotide diversity and Tajima’s D: 

https://tinyurl.com/yxurjgdx 

13. TreeMix: https://bitbucket.org/nygcresearch/treemix/downloads/ 

14. Trimmomatic: https://github.com/timflutre/trimmomatic 

15. VCFtools: http://vcftools.sourceforge.net/ 

16. wget: https://www.gnu.org/software/wget/ 

 

 

 
Fig. 1: Data format and analyses using individual vs. pooled samples (i.e. DNA of 

several individuals mixed prior to sequencing, hereafter pool-seq). All analyses can 

be performed with individual data (dotted arrow), but the pool-seq data have 

limitations (see also #3.3.1 for the advantages and disadvantages of pool-seq). 

Methods or programs shown in green are those used in the following sections. 

 

3. Methods 

 

 After introducing notions related to the handling of large sequencing data, we 

will provide guidelines to perform population genomic analyses based on two publicly 

available data from two different species: African rices from [5] and sessile oaks from 

[6]. These two examples were selected to cover broad plant biology related issues, 

with both crop- and wild flora-associated topics. In addition, these two studies used 

different kind of sequencing data: individual-based genotypes vs. pooled DNA 

samples (a mixture of the DNA from several individuals prior to sequencing, hereafter 



pool-seq). As shown in Fig. 1, all analyses described in the analyses of the pool-seq 

data are based on the allele frequencies can also be performed for individual-based 

data, at least when a minimum of 12-15 individuals were sequenced per population. In 

other words, analyses based on pool-seq data are far more limited than individual-

based sequencing data, but pool-seq represents a cheaper strategy than the sequencing 

of individuals (see #3.3.1). Our analyses focus on plant species but it has to be noted 

that such analyses can also be used to analyze various non-plant datasets, at least for 

diploid eukaryotic species. 

 

3.1 From raw DNA data to genetic variants 

 

1. Reads: All genomic projects start from the sequencing of very small pieces of 

DNA generated by a DNA sequencer, called reads. Despite recent advances in 

sequencing technologies (hereafter NGS, “for Next-generation sequencing”) to 

generate long fragments (up to 100,000 bases or more, e.g. Oxford Nanopore or 

PacBio technologies), these technologies remain, at the time of writing, too 

expensive to sequence multiple individuals of a given population in order to 

describe the genetic variation observed within this population. Such new 

technologies therefore remain little used in population genomics projects. Most 

population genomicists rather use huge quantities of very short - but affordable - 

sequencing reads (e.g. Illumina sequencing of both ends of a short DNA 

fragment, so called paired-end reads, generating 100-300 bases of known 

sequence for each ends). 

2. FASTQ file structure: High-throughput sequencing instruments generally output 

sequences under a FASTQ format. A FASTQ file is a text file with n repeats of 4 

lines, with n depending of the total number of generated reads. The first line 

begins with a “@” (equivalent of a “>” for a FASTA sequence) which indicates 

a new sequence. This line then contains a unique sequence identifier. The second 

line corresponds to the sequencing read itself, i.e. the succession of the different 

DNA bases read by the sequencer instrument. The third line generally only 

contains a “+” character. The fourth line corresponds to the quality values for the 

corresponding bases in second line, in the exact same order. In other words, the 

DNA sequencer provides a confidence score in the assignment of the 

corresponding base call. The very first step of a population genomic project is 

therefore to exclude low quality reads and bases from these raw FASTQ files, in 

order to eliminate the majority of sequencing errors, a process commonly 

referred as read trimming. 

3. Read mapping to reference genome: All along this chapter, we assume that a 

reference genome is already available for the species you are interested in (or at 

least a closely related one). If not, the best solution is to start by generating a 



high-quality de novo genome assembly (this step ideally requires to establish a 

close collaboration with an experienced bioinformatician). If so, trimmed reads 

are then “mapped” against a reference genome in order to find the most likely 

genomic location for a read sequence, a process hereafter referred as read 

mapping. A read mapper is not strictly speaking a read alignment software. The 

read mapper tries to find the best location(s) for a given read, but without 

establishing the base-to-base correspondence with the reference sequence. It 

might seem surprising, but can be explained by a complex time-sensitivity trade-

off. Any increase in the sensitivity of the mapping heavily slows down the speed 

of execution. To remain computationally efficient, particularly with extremely 

high volumes of sequence data, the two most commonly used read mappers 

BWA [7-8] and Bowtie2 [9] identify the potential loci of origin of a sequencing 

read, but without performing precise local alignments. For short read data, these 

softwares remain fast and accurate methods, but it remains important to bear this 

limit in mind, especially in the future when reads will increase in length. 

4. Variant calling: The identification of genetic variants from NGS data, hereafter 

variant calling, requires the accumulation of several reads at the same location, 

to increase the confidence in the identification of polymorphisms. Such methods 

generally predict the likelihood of variation at each locus to take into account 

some sequencing or mapping biases. Current population genomic studies are 

generally based on short polymorphisms, either SNP or short indels (insertions 

and deletions). Large structural variations (e.g. large indels, translocations, 

duplications) represent a non-negligible part of the genetic variation, but remain 

quite difficult to access with the commonly used short-read data. This specific 

genetic diversity is therefore not addressed in the following sections. 

 

3.2/ Case study 1: individual-based genotyping  

3.2.1 African rice  

 

Plant domestication might appear at first sight to be a simple and abrupt 

transition from a wild ancestor to a domesticated species. Following this view, it is 

generally assumed that only a part of the phenotypic (and genetic) diversity of the 

ancestral species has been used by the early farmers and therefore has contributed to 

the newly domesticated one, generating a so-called domestication bottleneck. As a 

consequence, theoretical work predicts that domestication is associated with a 

reduction of the genetic variation and a higher mutation load, i.e. an increase in the 

number of deleterious alleles. This prediction is empirically supported in several plant 

or animal species [10]. For most domesticated species, domestication can be viewed 

as a long transitional process over millennia rather than a sudden event. This induces 

several other layers of complexity (reviewed in [11]), such as the possibility for (i) 

past and/or contemporary gene flow between wild and domesticated species, (ii) 



several wild contributors, (iii) several centers of domestication, (iv) massive changes 

in census and effective population sizes (Ne) of either the wild, the domesticated or 

both species. All these situations are expected to have substantial impacts on the 

neutral diversity and can generate confounding patterns leading to inappropriate 

conclusions.  

In this section, we decided to use huge NGS data from the domesticated 

African rice (Oryza glaberrima). This species is characterized by a small genome 

(<350 Mb) and a simple organization (diploid), at least for a plant species. In addition, 

Cubry et al. (2018) recently investigated the evolutionary history of this species 

through a large sequencing projects of 83 wild (O. barthii) and 163 domesticated 

individuals. This study represents an excellent and detailed piece of work. To speed 

up computations and help the reader to replicate this work, we have focused on a 

subset of 23 wild and 25 domesticated individuals from the centre of domestication 

(as identified by Cubry et al. [5], corresponding to present-day Mali, Ghana, Niger, 

Nigeria, Benin, and Togo). 

 

3.2.2 Variant discovery from publicly available data 

1. Databases: Before downloading publicly available sequence from the Sequence 

Read Archive (SRA) or the European Bioinformatics Institute (EMBL-EBI), a 

close reading of the webpage associated to the project can provide considerable 

useful information about the data. Both the SRA and the EMBL-EBI website 

give relatively similar information, but from our perspective, the EMBL-EBI 

website is more user friendly (Fig. 2). In the search bar, enter the ID of a project 

(e.g. ERP023549 for the African rice). To have an overview of the data, click on 

the associated project (for the African rice project: IRIGIN for International RIce 

Genome INitiative). The webpage containing a table with several fields by 

default: sample accession ID, the species name, some information relative to the 

sequencing instrument or the library protocol or different URL to download the 

data (Fig. 2). By selecting some additional columns, further information is 

available such as the number of reads or the sizes of the gzipped FASTQ files.  

 



 
Fig. 2: screenshot of the EMBL-EBI webpage for the African rice sequencing project 

described in Cubry et al. [5]. 

 

2. Data downloading to SNP dataset: To download the data, the best solution is to 

use a shell File Transfer Protocol (FTP) client such as wget. For example the 

accession ERR2008855 can be downloaded from SRA servers using the 

following command in a terminal emulator: 

wget ftp://ftp.sra.ebi.ac.uk/vol1/fastq/ERR200/005/ERR2008855/ERR2008855_1.fastq.gz 

wget ftp://ftp.sra.ebi.ac.uk/vol1/fastq/ERR200/005/ERR2008855/ERR2008855_2.fastq.gz 

And so on, for all individuals you want to download the read data.  
 

All our scripts are available to download and replicate all steps (including 

trimming, read mapping, variant calling, see 

https://github.com/ThibaultLeroyFr/Intro2PopGenomics/tree/master/3.2.2/). In a 

nutshell, we use Trimmomatic to remove low qualities bases using a window 

computing average quality and sliding along the read, excluding all remaining bases 

of the read, if the average quality over 4 successive bases drops below 15. After 

excluding low quality bases, reads with less than 50 remaining nucleotides are 

discarded. Then, we map all the remaining reads using BWA, remove duplicates with 

Picard and perform the variant calling under GATK. We use the GATK 

haplotypeCaller to first generate individual VCF file (gVCF for genome Variant Call 

Format) and then perform the joint genotyping of the 48 individuals (joint VCF in Fig. 

1). Low quality SNPs are excluded, generating a set of 6,150,642 filtered SNPs (i.e. 

with a “PASS” label in the final VCF file).  

 

 



3.2.3   Population structure 

 Genetic differences between populations can be investigated by examining 

population structure - sometimes referred to as population stratification - which 

represents genome-wide differences in allele frequencies. Such a difference in genetic 

ancestry among individuals is possible because the samples can be derived from 

several populations that have experienced different demographic histories. As a 

consequence, all population genomics project first assess population structure in order 

to take it into account in the downstream analyses. Aside from biological reasons, 

analyses of population structure allow to identify errors such as the accidental 

misidentification of some individuals arising during sample preparation, sequencing or 

bioinformatics phases. 

Given that this population structure represents a systematic shift in allele 

frequencies, a very large set of SNPs is unnecessary to investigate population structure 

patterns. A limited number of unlinked SNPs randomly selected across the entire 

genome (e.g. few thousands SNPs with a low proportion of missing data) is sufficient 

to get an accurate picture of the population structure. Such genome complexity 

reduction is also more computationally-efficient and reduces the number of variants in 

strong linkage disequilibrium (LD). LD represents a deviation from the hypothesis of 

random association of alleles within a genome and may impact the inferred population 

structure (see Note 1). Indeed, most popular population genetic tools use models 

assuming no or weak linkage disequilibrium within populations, including the most 

widely used model-based population genetics program STRUCTURE [12-14]. 

 

1. Principal Components Analysis (PCA): PCA is a commonly used exploratory 

analysis to infer population structure among individuals [15]. PCA helps to 

visualize genetic distance and relatedness between individuals by calculating 

principal components, with the top components explaining most of the 

differences among samples. In practice, PCA is sensitive to missing data. As a 

consequence, depending of the proportion of missing data in the VCF file (i.e. 

individuals with an unknown genotypes: “./.”), population geneticists either 

exclude all SNPs with missing data or replace missing values by the mean of the 

values based on the individuals with known calls. As a general rule, it is better to 

investigate population structure with few highly-informative SNPs than using 

large proportion of poorly-genotyped SNPs. This warning is especially important 

for SNP set derived from Restriction site-Associated DNA data (RAD-seq data, 

[16]) which generally contain a large proportion of missing data.  

  

 The African rice project is based on massive Illumina sequencing data, leading 

to a VCF contain very little missing data. As a consequence, we have chosen to 

remove all SNPs with missing data before performing PCA (i.e. grep -v “\./\.” 



[VCFfile]). An example of PCA based on the 48 African rice samples is shown 

in Fig. 3. The first axis of the PCA accounts for 14.5% of the total variance and 

separates four wild individuals from present-day Mali and three wild from 

Nigeria from all other samples. The second axis separates wild Nigerian samples 

from all other Malian samples. The third axis mostly separates 12 O. barthii 

samples from Mali. In summary, the PCA indicates different outcomes in the 

two species, with distinct population clusters observed in the wild species, while 

the domesticated species forms a single, relatively homogeneous, genetic group. 

 

 
Fig. 3: Principal component analysis of the 48 investigated samples represented by 

dots (left: PC1 & PC2, right: PC1 & PC3). Geographical location and species labels 

are based on the information provided in the Table S1 of Cubry et al. [5].  

 

2. Bayesian clustering: In addition to PCA, Bayesian clustering programs 

assigning individuals to ancestral populations such as Structure [12-14], TESS 2 

[17], BAPS [18] are very popular tools to infer population structure. Some more 

recent methods used roughly similar method approach but are more adapted to 

large set of SNPs, e.g. FastStructure [19], LEA [20-21] or TESS3 [22]. These 

methods infer the admixture proportion of each individual (Q-value) for a 

given number of ancestral populations (“K”). After a Plink transformation of the 

input file, we use the method implemented in FastStructure to provide an 

example based on the African rice data (Fig. 4). Assuming two ancestral 

populations (K=2), FastStructure partially excludes 7 wild O. barthii samples, 

including 4 from present-day Mali and 3 from Nigeria, from all other samples. 

The individual assignment of these 7 samples suggests that these samples are 

admixed between the genetic cluster observed in all investigated cultivated 

samples (maroon) and an unknown genetic cluster (yellow). At K=3, 

FastStructure infers a third group containing 12 samples from present-day Mali. 

PCA and FastStructure have generated very concordant results concerning these 



48 African rice samples. Both analyses already suggest some complexity in the 

evolutionary history of the African rice. 

 

 
Fig. 4: Individual assignment to two (top) or three (below) genetic clusters by 

FastStructure. Each bar represents a single individual, with portions of the bar 

colored depending on the ancestry proportions estimated assuming K=2 or K=3. The 

number of subpopulations that maximize the marginal likelihood is 2 (see 

FastStructure manual for details). Geographical location and species labels are based 

on the information provided in the Table S1 of Cubry et al. [5]. 

 

 

3.2.4 Diversity 

Nucleotide diversity greatly varies along the genome, with more genetic 

variation in intergenic regions than in genes. This general pattern reflects varying 

degrees of natural selection acting on genome, from neutral regions that do not 

positively or negatively affect the organism's ability to survive and reproduce (i.e. 

fitness), to genes under strong negative or positive selection. Negative selection refers 

to the purging of deleterious alleles at functionally constrained genes, because 

individuals with deleterious alleles are selected against and therefore contribute less to 

the next generation than the average of the population. Reciprocally, positive selection 

refers to the rapid fixation of advantageous mutation because individuals carrying this 

advantageous allele are expected to contribute more to the next generation. In both 

cases, it is important to keep in mind that the footprints of natural selection can extend 

to the vicinity of these regions because of linkage disequilibrium, over relatively long 

distance in regions of low recombination (generating so-called linked selection [23]).  



Two important measures of nucleotide diversity are generally used in 

population genomics, the number of polymorphic sites (Ѳ) and the mean proportion of 

nucleotide differences between different pairs of sequences randomly sampled in a 

population (π). By comparing the diversity of different groups of individuals, a 

Reduction of Diversity (ROD) can be estimated by computing: 1 − 𝜋𝐺𝑟𝑜𝑢𝑝1(𝑒.𝑔.𝑑𝑜𝑚𝑒𝑠𝑡𝑖𝑐𝑎𝑡𝑒𝑑)𝜋𝐺𝑟𝑜𝑢𝑝2(𝑒.𝑔.𝑤𝑖𝑙𝑑) . Such ratios are particularly meaningful for different research 

questions associated to plant conservation or plant breeding. For example, the total 

genetic diversity loss since the onset of plant domestication (or along a plant breeding 

program) can be investigated by comparing wild and domesticated species (e.g. wheat 

[24]). Based on a comparison of the 23 Q. barthii and 25 Q. glaberrima samples, an 

overall ROD of 0.327 is estimated, indicating that 32.7% of the Q. barthii diversity is 

lost. Genomic heterogeneity in ROD is also informative, particularly regions with 

very high ROD estimates (ROD exceeding 0.8 in red, Fig. 5). Remarkably reduced 

levels of nucleotide diversity in the domesticated species as compared to the wild 

progenitor species can be informative about candidate genomic regions (including 

genes) that have been subjected to strong artificial selection during domestication or 

breeding. 

 

A great statistical property of π and Ѳ (to be strictly accurate, π and 
𝛳𝑎1 , where 

a1= a1=∑ 1𝑖𝑛−1𝑖=1 ) is that these two statistics are equals in values assuming mutation-drift 

equilibrium and constant population size (d=π -  
𝛳𝑎1=0, see [25]). Any excess or lack of 

rare alleles in the population however creates deviations from zero because π tends to 

underestimate the number of mutations that are rare in the population. As a 

consequence, the difference between the two estimators is a commonly used measure 

to evaluate non-equilibrium demographic situation such as population expansion 

(generating an excess of rare alleles, overall negative Tajima’s D value) or population 

contraction (generating a lack of rare alleles, overall positive D value).  

By observing the genome heterogeneity in Tajima’s D, the footprints of natural 

and artificial selection can also be revealed in some specific regions of the genome. 

Positive values can be observed if selection maintains variation in some specific 

regions (balancing selection). Strongly negative values are informative about recent 

selection that has removed neutral variation surrounding a selected site (i.e. a selective 

sweep). Negative Tajima’s D values found in a domesticated species can therefore be 

informative about footprints of domestication and human selection (e.g. Fig. 5 for the 

case study on African rice).  

 

 

 

 



 
Fig. 5: Circular diagram showing different nucleotide diversity estimates for the two 

African rice species along the 12 chromosomes. From external to internal: GC 

content; π estimates (red = O. barthii, blue = O. glaberrima); Reduction of Diversity 

(ROD) to evaluate the difference in the domesticated O. glaberrima species as 

compared to the wild O. barthii (green = negative ROD values, orange = positive 

ROD values, red = positive ROD values exceeding 0.8); observed Tajima’s D values 

for O. glaberrima. Tajima’s D values are represented as a deviation from the median 

Tajima’s D values observed over the all sliding windows (D=0.171). Values lower 

than -1.83 or greater than 2.17 are shown in red and purple, respectively. These 

threshold values correspond to the -2/+2 decision rule, which is a simple rule of 

thumb, but remain commonly used in practice to find some candidate regions under 

selection. All estimates are based on non-overlapping 100-Kb sliding windows. 

 

 



3.2.5 Inferring population size history 

Whole-genome sequence data are increasingly used to infer the history of a 

population, such as the historical changes in effective population sizes (Ne). Ne 

represents the number of breeding individuals in an idealized Wright-Fisher 

population that experiences similar amount of genetic drift than the real population 

(see [26] for a review). It may seem like an abstract concept, but the study of the 

evolution of Ne is particularly important in population genomics because Ne variation 

explains the dynamic of genetic diversity within a population (loss or gain) or the 

fixation of deleterious alleles (#3.2.6). Following the nearly neutral theory, the genetic 

diversity Ѳ equals 4 x Ne x µ (for a diploid species, where µ is the per-generation 

mutation rate). Assuming that µ remains constant over quite long periods of time, 

recent variation of Ѳ only depends of the effective population size (Ne) - which 

captures the effect of genetic drift -, with more chance for variants to be fixed by drift 

in small Ne as compared to large Ne populations. 

To investigate this variation, many methods based on the coalescent theory are 

now available. Without going into details, a coalescence event occurs when two 

alleles merged into a single ancestral copy (i.e. the most recent common ancestor), 

when looking backwards in time starting from the present. In other words, the 

coalescent theory models how genetic variants sampled from a given population may 

have originated from a common ancestor (See [27] for an introduction). By estimating 

the rate of coalescence during any period of time, it is therefore possible to infer 

population size changes. Over the last decade, these new methods have rapidly 

become popular to provide information about the factors driving genetic diversity of a 

given species, which is especially crucial for conservation-related issues. Major shifts 

in the evolutionary trajectories can be identified and potentially be correlated with the 

major climate change periods, or with geological and anthropogenic disturbances.  

The coalescent-based method implemented in SMC++ [28] is one of the best 

methods currently available to reconstruct the history of Ne. This method is fast, easy-

to-use and efficient, even for analyzing tens or hundreds of unphased whole-genome 

sequences. We therefore performed a simple test based on the African rice dataset and 

observed considerable changes in past effective population size (Fig. 6).  

As a limited number of individuals of the progenitor species had presumably 

been used by the early farmers and therefore contributed to the domesticated species, a 

drastic reduction in effective population size (Ne) at the onset of the domestication is 

generally assumed, which is commonly referred to as the domestication bottleneck. 

Similarly to the study of Cubry et al. [5], we inferred substantial changes in effective 

population size of the African rice over the last 100,000 years. Surprisingly, we were 

however unable to infer the expected reduction of Ne at the onset of the African rice 

domestication, but rather we inferred an expansion between 2,000 and 10,000 years 

ago. This lack of support for the domestication bottleneck can be due to a series of 



factors such as the reduced number of genomes used or the existence of long runs of 

homozygosity (masked in Cubry et al. [5]). As a consequence, the pattern we have 

recovered over the last 10,000 years should be interpreted with caution. This result is 

illustrative of the importance of remaining prudent when interpreting such inferences. 

Violations of some assumptions can substantially distort the inference of effective 

population size changes. SMC++, as well as similar methods (e.g. PSMC [29]; 

MSMC [30]), relies on the assumption of no external gene flow (originating from 

another population or species). This assumption is one of the most frequently violated. 

Some more advanced methods available to decipher more complex evolutionary 

histories (see Note 2), including several closely-related species that have experienced 

different periods of gene flow, can also be helpful to provide additional statistical 

support for historical changes in Ne [31-33]. 

 

 
Fig. 6: Estimated changes in past effective population sizes (Ne) for O.barthii (red) 

and O. glaberrima (blue) inferred using the coalescent-based method smc++.  

 

3.2.6 Deleterious mutation load 

A downstream consequence of the domestication bottleneck is the higher load 

of deleterious mutations in the domesticated species as compared to the wild 

counterpart. Following the nearly neutral theory, neutral nucleotide diversity is 

expected to be reduced proportionally to the reduction in Ne because neutral variants 

have more chance to be fixed by drift in small Ne as compared to large Ne populations 

(#3.2.5 above). For non-neutral variants (i.e. s≠1), fixation probabilities depend on the 
strength of selection and effective population size (Nes, e.g. [34]). A domestication 

bottleneck is therefore expected to induce a shift in the balance between selection and 

drift, with drift playing a greater role after the bottleneck. This also holds true for 

deleterious mutations, particularly slightly deleterious mutations, which are therefore 



expected to accumulate more easily. In other words, the domestication bottleneck 

reduces the efficacy of purifying selection, the force which tends to remove harmful 

mutations. Domesticated plants are therefore expected to have an increased mutation 

load as compared to their wild progenitor species. This hypothesis is often referred as 

the ‘cost of domestication’ [35]. Some recent studies have provided considerable 

empirical support for this hypothesis, e.g. in maize [36], Asian rice [37], cassava [38] 

or wine [39]. 

In addition to the 23 and 25 WGS of O. barthii and O. glaberrima, we use 

sequencing data of three O. meridionalis (Australian wild rice individuals from [40]) 

and three O. sativa individuals (domesticated Asian rice individuals from [2]) to infer 

the ancestral allele of each SNP (the original non-mutated allele). In short, the recent 

phylogeny of the Oryza species based on the WGS data suggests that O. meridionalis 

had diverged from the common ancestor of African and Asian rices 2.4 million years 

ago. The divergence of African and Asian rices is more recent (<1 million years ago, 

see [40] for details). Australian and Asian rices are used to infer the ancestral allele in 

order to count the number of derived alleles in the wild and the domesticated African 

rice. Based on the SNPs for which the ancestral allele was unambiguously determined, 

we identify more fixed derived alleles in O. glaberrima, as compared to O.barthii 

(1,050,545 and 825,826, respectively), which can be considered as another piece of 

proof supporting the hypothesis of a domestication bottleneck.  

To look into more details the burden of deleterious genetic mutations, various 

methods are available. Simple methods such as the comparisons of ratios of the 

nucleotide diversity (or heterozygosity) at non-synonymous as compared to 

synonymous polymorphisms can be very relevant (e.g. between a wild progenitor and 

a domesticated species [41]). Indeed, most within-gene mutations changing the amino 

acid sequence are expected to be slightly or strongly disadvantageous (i.e. 

deleterious). Higher ratios of non-synonymous to synonymous polymorphisms are 

therefore informative of higher deleterious loads. In silico methods predicting the 

potential deleterious effects of mutations are more and more popular (e.g. SIFT [42]). 

Subsequently, we use the software PROVEAN (PROtein Variation Effect Analyzer 

[43]) which performs local alignments (BLAST) against a protein database to predict 

whether an amino acid change in a given protein affects its function. A score is then 

computed based on the 30 best cluster hits. A negative PROVEAN score is indicative 

of a deleterious mutation. 

This analysis requires different steps, which are detailed on github 

(https://github.com/ThibaultLeroyFr/Intro2PopGenomics/tree/master/3.2.6/Scripts_pr

ovean/). Before running PROVEAN, we have built a NCBI 'non-redundant' (nr) 

database containing only proteins corresponding to monocots species. By limiting to 



monocotyledons species, our objective is to avoid spurious BLAST alignments against 

evolutionary distant species. Among a total of 120,324 candidate non-synonymous 

mutations passing PROVEAN filtering criteria, 18,369 mutations are predicted to be 

putatively deleterious mutations (score < -2.5). Among these 18,369 SNPs, the 

ancestral state is unambiguously determined for 11,829 variants (see above). 

Deleterious allele frequency spectra at these 11,829 putatively derived deleterious 

SNPs are generated for both the wild and the domesticated species (Fig. 7). 

Interestingly, a higher mutation load in O. glaberrima as compared to O. barthii is 

identified, but this difference is relatively small. Our analyses are rather consistent 

with substantial deleterious mutation load O. barthii and a slight increase in O. 

glaberrima, which can be compatible with the African rice domestication.  

 

 

Fig. 7: Deleterious mutation loads in the wild O. barthii and the domesticated O. 

glaberrima species, as estimated using proteins of the African rice. DAF = 

Deleterious Alleles Frequencies. 

 

Looking at this difference more carefully, the number of deleterious alleles per 

individual is slightly higher in O. glaberrima (Fig. 8), but this difference seems to be 

more explained by a difference in heterozygous sites than by a strong difference in the 

number of homozygous deleterious variants. Because deleterious mutations tend to be 

recessive [44], such a limited difference in the number of homozygous variants 

therefore suggests that this higher mutation load may only induce a marginal fitness 

difference between the two species. This first investigation already gives an overview 



of the accumulation of deleterious variants, but some analyses are available to conduct 

more precise measurements [45-47].  

 

 
Fig. 8: Total numbers of deleterious alleles (left), heterozygous calls (centre) and 

homozygous derived alleles per individus for O. barthii (red) and O. glaberrima 

(blue). The black bar indicates average per species. 

 

 

3.2.7 FST  & genome-scans for selection 

 

The fixation index FST is probably the most widely used population genetic 

statistics. FST measures the differentiation between populations and ranges from 0 to 1. 

However, some slightly negative values can be observed in the case of uneven sample 

sizes and should be interpreted as a zero value. A value of zero indicates complete 

panmixia, i.e. free interbreeding between the two assumed populations resulting in no 

population structure or subdivision. On the contrary, a value of 1 indicates that the two 

populations are homozygous for two different alleles (e.g. a SNP with genotypes A/A 

observed in all individuals of the first population and genotypes C/C for all 

individuals of the second population). In other words, the higher the FST value is, the 

more different the allele frequencies in the two or more populations are.  

To give a better idea of how useful report of FST values can be, we compute FST 

between samples of O. barthii and O. glaberrima, at two different genomic scales: on 

a SNP-by-SNP basis or using 10-Kb sliding windows (Fig. 9). 



 
Fig. 9: Fixation index (FST) values as computed using vcftools and estimated for each 

SNP (external circle) or for non-overlapping 10-kb sliding windows (internal circle) 

over the 12 rice chromosomes. A color scale from yellow (FST =0) to red (FST =1) is 

used for the SNP-by-SNP FST estimates to illustrate the continuous of variation in FST 

values. Empirical distribution of the observed FST values across all SNPs is shown in 

the center of this circular graph (corresponding FST values for the different quantiles: 

5% = -0.03; 90% = 0.27; 95% = 0.41; 99% = 0.66 & 99.9% = 1.00) 

 

The use of the empirical distribution of the among-locus variation in FST (Fig. 

9) to identify loci that deviate from neutral expectations - and therefore representing 

candidate footprints for natural or artificial selection - is inspired by the seminal study 

of Lewontin & Krakauer [48]. Indeed, loci under balancing selection in the two 

populations are expected to exhibit lower FST values, while regions under diversifying 

selection are expected to exhibit larger differences in FST as compared to selectively 

neutral loci. Diversifying selection indeed triggers allele frequency changes over time 

in such a way of generating and maintaining high genetic differences in the two 

populations. In practice, identifying loci under balancing selection is a near-

impossible task to achieve. Identifying diversifying selection remains a complex 

issue. The difficulty comes from the fact that the among-loci variation in FST is highly 

dependent on the demography of the investigated populations [49-53]. Over the last 



20 years, considerable attention has been devoted to develop statistical approaches 

that partially address this challenge (e.g. [54-55]; hereafter referred to as genome 

scans for selection). In this section, we introduce the use of PCAdapt [56], a R 

package that is well suited to identify variants with large differences in allele 

frequencies between clusters of individuals. This package has several advantages. 

From the user’s perspective, this solution is easy to use under an R environment, 

especially with the detailed tutorial available for this package. From a more 

computational and biological perspective, PCAdapt is computationally-efficient and 

the analyses do not require to group individuals into populations - i.e. no prior 

information about the two or more populations, which can be a difficult task to 

achieve (e.g. #2.2.3 for the African rice). In addition, PCAdapt can handle very large 

datasets and reports summary statistics in a reasonable computational time, offering an 

alternative to the genome scans methods based on a Bayesian framework, which are 

several orders of magnitude longer (see #3.3.6 for the use of a Bayesian framework). 

 

 
 

 

Fig. 10: Individual PCA and scree plot after LD thinning. Top left) Coordinates of 

individuals on the two principal components. Top Right) Coordinates of individuals 

on the PC1 and PC3. Below) Scree plot (proportion of explained variance) for the 20 

first PCs after LD thinning. Based on this screeplot, K=3 was preferred. 



After a preliminary analysis revealing some regions of strong linkage 

disequilibrium (LD) in the African rice dataset, the African rice dataset is pruned to 

remove SNPs in strong LD. Indeed, such an extent of LD is expected to have a 

considerable impact on the analysis (see Note 1). As a consequence, the dataset is first 

“pruned” to remove SNPs in strong LD, before computing the principal components 

and performing the outlier detection. Coordinates of individuals on the two principal 

components (PC) (Fig. 10, as compared to Fig. 3) are different after SNP pruning. 

This reduction of the LD likely improves the ability of the PCs to capture the genome-

wide patterns reflecting ancestry differences, as commonly assumed [57]. The first PC 

mostly isolates samples from O. barthii and O. glaberrima, with the notable exception 

of 4 O. barthii samples from Mali. Visual evaluation of the so-called scree plot [58] 

for PC1 to PC20 suggests that the 3 first components explain a substantial fraction of 

the total variance in the data, as compared to the 17 additional components that were 

also investigated (Fig. 10). As a consequence, we use the implemented method in 

PCAdapt to scan genomes assuming these 3 components.  

  

Fig. 11: Manhattan plots showing the chromosome position of each outlier detected 

using PCAdapt and assuming K=3. Score is expressed as -log10(p-values). SNPs with 

pvalue < 0.01 (i.e. -log10(p-values)=2) are shown in orange and pvalue < 0.00001 (-

log10(p-values)=5) are shown in red. 

The genome positions of all outliers as shown in the so-called Manhattan plots 

(Fig. 11) reveal that they are distributed throughout the genome. SNPs deviating from 



neutral expectation and therefore potentially under selection are unexpected to have 

this distribution, since selection is unlikely to impact all the genome. These outputs 

are more consistent with a substantial background noise generating an excess of 

outliers. However, some genomic regions exhibiting hundreds of variants in several 

narrow genomic regions, e.g. on chromosomes 4 or 6 (Fig. 11) are more convincing. 

These regions therefore represent excellent candidate regions to identify the African 

rice domestication genes. 

 
 

3.3 Second case-study: sessile oak populations  

3.3.1 Pool-seq as a cost-efficient method  

 

For many plant species, the sequencing of hundreds or more individuals using 

an individual-based strategy represents a too expensive option. Considering for 

example, the sequencing of 50 diploid individuals at reasonable sequencing coverage 

(20X) - the total sequencing effort would be around 1,000X - in order to ensure 

accurate individual calls for all individuals. For some biological questions, the 

genotypes of all individuals are not truly necessary. Instead, accurate population 

estimates of the frequency of each allele along the genome can be sufficient [59]. In 

this case, a cost-effective alternative remains possible. The strategy is to first 

equimolarly mix the DNA of these 50 individuals prior to sequencing in order to 

sequence the pool at a lower coverage. Assuming that the pool is sequenced at 100X 

(so resulting in a 10-fold drop in the sequencing cost), each chromosome is therefore 

expected to be sequenced only once, on average, which is low. But, given the total 

number of chromosome sequenced in the pool, the allele frequency estimated for the 

whole population is expected to be accurate. Based on mathematical derivations, 

Gautier et al. [60] provided theoretical support for this accuracy. These authors 

showed that the sequencing of DNA pools remains an efficient strategy under various 

realistic experimental designs. They also provide an easy-to-use tool (PIFs [60]) to 

optimize the experimental pool-seq design considering several parameters or 

experimental errors (e.g. pipetting biases).  



 
Fig. 12: Comparison of the accuracy in the allele frequency estimation between two 

strategies, as performed using PIF [60]: a pool-seq strategy of 50 individuals 

sequenced at a mean pool coverage of 100X and an individual-based genotyping 

strategy with a growing number of individually sequenced at 20X. The tipping point is 

26 individuals assuming no experimental biases. Even after considering some 

experimental biases, a pool-seq strategy of 50 individuals sequenced at a pool 

coverage of 100X is expected to outperform a design with 20 individuals sequenced at 

20X (the equivalent of 400X of sequencing data; for details, see [60]). 

 

 

Based on a rapid simulation using this tool and the number of individuals 

previously assumed (Fig. 12), it indicates that the sequencing of a pool of 50 

individuals with a mean pool coverage of 100X is expected to generate as accurate 

allele frequency estimates as 26 individuals separately sequenced with a depth of 

coverage of 20X (the pool-seq strategy therefore reduces by 5 the sequencing costs). 

Even assuming substantial experimental error (50%) generating departure from 

equimolarity (i.e. a dispersion of individual contributions around the expected mean 

value assuming equal DNA quantities), the allele frequency estimates are expected to 

be roughly similar to 23 individuals separately sequenced, each with a depth of 

coverage of 20X (Fig. 12). 

 

3.3.2 Population genomics in wild sessile oaks 

 

The sessile oak (Q. petraea), a species belonging to the European white oaks 

complex, is an example of plant species with an impressive amount of genomic 

resources, including huge pool-seq data ([6;61-62]). Sessile oaks extend from 



Northern Spain to Southern Scandinavia, thus representing a large diversity of 

climatic conditions (Fig. 13). In South-West French Pyrenees, some sessile oak 

populations occur from lowlands to middle elevations (up to 1,600 meters, Fig. 13), 

with substantial differences in mean annual temperature (up to 7 degrees Celsius) or in 

precipitation sums (a difference of up to 250 mm/year, [6] for details). In the 

subsequent sections, we perform a step-by-step reanalysis of the data used in Leroy et 

al. [6] to illustrate the possibilities of the pool-seq data. In this study, 18 pools were 

sequenced: 10 sessile oak populations collected on a latitudinal gradient in Europe 

(including 7 populations from France, 2 from Germany and a population from Ireland) 

and 8 sessile oak populations from an altitudinal gradient in the French Pyrenees 

(collected along two close valleys, with 4 populations per valley (100m, 800m, 1200m 

and 1600m). The DNA of 20-25 individuals were equimolarly mixed prior to 

sequencing, except for the two populations at 1600 meters for which only 10 to 18 

individuals were used (for details, see [6]). Analyses performed in this section are 

basically performed following the same strategy than in the original paper, but the 

analyses are simplified. 

 

  

Fig. 13: Sessile oak distribution and climate variation. Left: European distribution 

map of Q.petraea created with QGIS from data made available by the European 

Forest Genetic Resources Programme (EUFORGEN [63]). Right: Sessile oak trees in 

the snow. Photo taken by T. Leroy on November 22rd, 2015 at an elevation of 1200 

meters in one of the French Pyrenees forests investigated in Leroy et al. [6] (‘O12’ 
population).  

 

3.3.3 From raw sequencing data to allele counts 

 

The Illumina data can be downloaded from SRA or EMBL-EBI using the 

project ID PRJEB32209. We make available on github all the scripts used to 

download and perform the trimming, read mapping and to identify variants. The 



pipeline is roughly similar to those used for the African rice data, at least for read 

trimming and mapping. A notable exception is the way in which variants are 

identified. As previously described (#3.1), variant calling methods have been 

developed to minimize the number of false-positive variants (e.g. sequencing errors). 

Indeed, each diploid individual possess either two copies of the reference allele 

(homozygous for the same allele than the reference genome), one copy (heterozygous, 

with both a reference and an alternative allele), or none (homozygous for the 

alternative allele). In other words, the frequency of the reference allele estimated for 

each individual is expected to be close to 1, 0.5 or 0. When the coverage is high 

enough (> 20), deviations from these situations can be informative of false positive 

SNPs. In contrast, such investigations are impossible to perform with pool-seq data 

because DNA from several individuals are mixed prior to sequencing. As a 

consequence, only few parameters can be used to exclude false positive SNPs, i.e. the 

minor allele frequency (MAF) and the depth of coverage per at each position. Illumina 

sequencing errors are expected to be about 1% or less, so it is generally recommended 

to use a MAF that exceeds this value (e.g. 2% or more). Similarly, coverage is 

expected to vary across the genome following a Poisson distribution [64]. Extreme 

values in the observed distribution of coverage depth are also informative from some 

read-mapping biases inducing an excess or deficit of coverage compared to the 

expectations assuming this distribution. For example, highly covered regions can be 

due to reads corresponding to two genomic loci with almost similar sequences (e.g. 

recent duplications) aligning to a unique location of the reference sequence. Such 

regions therefore present a high risk of identifying false positive SNPs. In practice, a 

matrix of allele counts (Fig. 1 & Table 1) contains both allele frequencies and 

coverages that can be used to filter variants. 

 

One thing must be kept in mind, however: errors in pool-seq data are 

necessarily more numerous than in individual-based sequencing. Even after using 

some MAF or coverage thresholds, the number of false positive SNPs can remain 

substantial. Population-level estimates of nucleotide diversity can be greatly inflated, 

especially for species with low to extremely low genetic diversity, for which the 

noise-to-signal ratio can be high. In this section, we choose not to cover diversity-

related analyses (including comparisons of estimators, e.g. Tajima’s D) based on pool-

seq data to call for caution. It must however be noted that some methods already exists 

(e.g. Popoolation [65]) and some studies successfully reported similar range of 

estimates based both on individual and pool-seq datasets (e.g. oaks [62]). 

 

 

 

 



 

Table 1: a hypothetical example of a read count matrix with two SNPs in rows. The 

two pools are assumed to be sequenced at a mean pool coverage of 100X. Allele 

frequencies can be easily derived from this matrix (e.g. 30/(75+30)=0.29 for the pop1 

of the SNP Chr1:47).  

Chromosome Position Ref allele Major allele 
(all 

populations) 

Minor allele 
(all 

populations) 

Major 
allele 

counts 
(pop1) 

Minor 
allele 

counts 
(pop1) 

Major 
allele 

counts 
(pop2) 

Minor 
allele 

counts 
(pop2) 

Chr1 47 G G C 75 30 49 55 

Chr1 112 T A T 68 20 79 14 

 

 

 

 

3.3.4  Inferring the history of a set of populations  

 

Allele frequencies are expected to be very informative about historical 

relatedness between populations. Indeed, two populations that have a recently shared 

history are expected to exhibit more similarities in allele frequencies because of a low 

influence of genetic drift, as compared to two genetically distant populations. As a 

consequence, inferring the history of a set of populations based on allele frequencies is 

expected to be possible. This is exactly what Treemix [66] aims to do. This genetic 

tool infers the relationships among populations as a bifurcating tree, which can 

therefore be considered as an analogous to phylogenetic trees. To do so, the software 

first infers the variance-covariance matrix of allele frequencies between population 

based on a large set of variants and then finds the maximum likelihood tree of 

populations than explains most of the observed variance in relatedness between 

populations.  

In the case of sessile oak, TreeMix computes the 18x18 variance-covariance 

matrix using a huge set of SNPs (37 million SNPs). Because the allele frequencies at 

nearby SNPs are expected to be highly correlated due to linkage disequilibrium (see 

Note 1), we set the parameter k to 1,000 (blocks of 1,000 SNPs) to take into account 

this bias. TreeMix therefore first estimates the variance-covariance matrix based on 

37,062 blocks of 1,000 SNPs.  

Using the R scripts from the TreeMix suite, the total variance explained by a 

simple bifurcating tree can be estimated. Applied to the sessile oak dataset, drift alone 

accounted for more than 89% of the total variance in allele frequencies among 

populations. An example of phylogenetic visualization of the inferred best likelihood 

tree is shown in Fig. 14. As a first step, it provides a lot of information regarding the 

relatedness of populations. For example, sessile oak populations from the latitudinal 

gradient are genetically different from the populations from the altitudinal gradient, 



 

especially the six populations at the highest elevation (Fig. 14). The population from 

Ireland however departs from this general pattern, since this population is more 

related to Pyrenean populations at high elevation. 

 
Fig. 14: Population splits inferences under TreeMix assuming a simple bifurcating 

tree (no migration nodes). Left: Unrooted visualization of the best likelihood tree. 

Unlike in the study of Leroy et al. [6], we do not use additional species to root the 

tree, i.e. to find the most basal ancestor of the tree, but only perform the inference 

based on the 18 sessile oak populations. Right: Visualization of the matrix of 

residuals. For example this matrix shows that populations 124 and O16 have a 

remaining variation in relatedness (black square) that is not captured by the 

bifurcating tree. 

 

 In the great majority of cases, a simple bifurcating tree cannot explain all the 

genetic variation observed in the variance-covariance matrix. TreeMix allows adding 

some additional edges connecting distant nodes or branches. These events can be 

interpreted as different migrations events, either ancient or contemporary, that have 

contributed to generate populations with a mixed ancestry (so-called admixed 

populations). We can therefore perform simulations for a range of migration events 

(m). 

By adding different migration events, the likelihood of the model (or the total 

variance explained) is expected to increase (Fig. 15). For example, adding a single 

migration node substantially increase the proportion of explained variance (+3.1%, 

see Fig. 16 for the corresponding tree topology).  

 



 

 
Fig. 15: Proportion of the variance explained for a growing number of migration 

nodes. Only one simulation was performed per migration node. 

 

 
Fig. 16: Population splits inferences under TreeMix assuming a simple bifurcating 

tree and a migration node. Left: Unrooted visualization of the best likelihood tree and 

the inferred migration node. Right: Visualization of the matrix of residuals for this 

best tree. Unlike in Fig. 14, no strong excess of remaining variation in relatedness 

between populations 124 and O16 is observed. 

 

Admixture between populations can be tested using three- and four-population 

tests. These f3 and f4 tests were developed by Reich et al. [67] and Keinan et al. [68], 

respectively, and are implemented in the TreeMix suite. The tree-population test 

f3(A;B;C) aims at testing if a given population A is admixed between two other 



 

populations (B and C). Negative f3 values are indicative of admixture (see [67] for 

methodological details and [6] for empirical tests on oak data). 

 

3.3.5  FST Fixation indices 

Several bioinformatic solutions were developed to compute measures of 

differentiation between pools such as FST (see #3.2.7 for general information about 

FST). Popoolation2 [69] is probably the most widely used program for this purpose. In 

this section, we used the new estimator of FST recently developed by Hivert et al. [70], 

because of its higher robustness to different sources of bias associated with pool-seq 

([70] for details). In addition, this new FST estimator is implemented in a R package 

(“poolfstat” [71]) which also generates input files for BayPass [54], the genome scan 

method used in the section 3.3.6.  

 Using the R package poolfstat, the computePairwiseFSTmatrix function can be 

used to calculate pairwise FST values over the whole dataset, which can be useful to 

have a rapid overview of the genetic structure among the different pools (Fig. 17). 

 

 
Fig. 17: Pairwise FST values between the 18 sessile oak pools, as computed by the R 

package poolfstat. To speed up computations, computations were performed on a 

random selection of 100,000 SNPs among the whole SNP set.  

 

FST values can also be computed for each SNP using the computeFST function 

to detect SNPs that exhibits very high levels of differentiation among all pools (black 

line, Fig. 18). FST values can also be estimated for each SNP and each pair of pools 



 

using the computePairwiseFSTmatrix function with the following argument 

“output.snp.values = TRUE” (grey lines, Fig. 18). 

 

 
Fig. 18: Distributions of Pairwise (grey) and among-population FST (black) values. 

Each grey line corresponds to the distribution of FST for one of the 153 (i.e.  
18∗(18−1)2 ) 

possible pairs.  

 

3.3.6  Genome-scans of selection 

Unlike the genome scan for selection performed for the African rice (section 

#3.2.7), we use a Bayesian framework to detect footprints of natural selection. We 

have chosen the method implemented in BayPass [54], which is equally suited for 

pool-seq and individual sequencing data. Many other methods are available and of 

interest too, including Bayenv [72-73]. Core models of Bayenv and BayPass are 

indeed very similar. First, the population structure is captured by computing a 

covariance matrix of allele frequencies across all populations. This matrix is 

particularly convenient since it makes technically possible to perform extensive 

neutral simulations assuming this inferred covariance matrix in order to calibrate a 

measure of differentiation (Pseudo-Observed DataSets, PODS) and then identify 

threshold values based on these neutral simulations. Under Bayenv or BayPass, the 

differentiation metric used is the XtX, which can be considered as a SNP-specific FST 

explicitly accounting for the population structure. Outlier SNPs are the observed 

variants (red, in Fig. 19) deviating from neutral expectations, i.e. those exhibiting 

greater XtX values than expected based on the simulations (black, Fig. 19).  

 

XtX outliers are not randomly distributed along the genome, but rather cluster 

in several genomic regions (black dots, Fig. 20). All these regions show an excess of 

differentiation among populations as compared to the expectations based on the 

variance-covariance matrix. 



 

 
Fig. 19: Distributions of the XtX values for the observed dataset (red) and for the 

simulations assuming the variance-covariance matrix (black). Thresholds 

corresponding to the top 1% and 0.001% of the XtX values based on simulations are 

shown by the dotted lines. 

 

 

  

Fig. 20: Manhattan plots showing the chromosome positions of all SNP and the 

corresponding XtX value as computed under BayPass. SNPs with empirical XtX 

values exceeding the 99% and 99.999% thresholds based on Pseudo-Observed 

DataSets (PODS, orange and red lines, respectively) are shown in dark grey and 

black, respectively.  

 

 

3.3.7  Genotype-environment association (GEA) 
 

BayPass can also identify association between allele frequencies differences 

and population-specific covariables, such as environmental or phenotype data (e.g. 

temperature, height or yield). Assuming that climatic or phenotypic data is available 



 

for the set of populations under investigation, it is possible to identify allele frequency 

variation along these climatic or phenotypic gradients (so-called genetic clines). 

Associations to environmental covariables are often referred as to Genotype-

Environment Associations (GEA), while associations to phenotype are often referred 

as Genotype-phenotype associations (GPA) or population Genome-Wide Association 

Study (pGWAS). The strategy is to find correlations between allele frequencies at a 

given locus for a set of populations and mean values for a given trait for the same 

populations. In a nutshell, BayPass infer this “environmental effect” through a locus-

specific regression coefficient parameter (β). In BayPass, the significance of this 

parameter can be tested using different decision rules (see [54] for details). Here, we 

use a simple comparison of models with and without association (i.e. a model 

assuming β≠0 vs. β=0) and quantify this support using Bayes Factors (BF). The most 

positive BF values correspond to SNPs with the highest support for the model with a 

significant environmental or phenotypic effect. In general, SNPs of great interest are 

those simultaneously exhibiting both allele frequency differences among populations 

(highest XtX values) and associations (highest BF values, Fig. 21). 

 

  

Fig. 21: Whole-genome scan for genetic differentiation (XtX) and association (Bayes 

Factors, BF) with mean annual temperature (left) or precipitation sums (right) 

covariables and identification of SNPs of interests (orange or light blue, best 

candidates red and dark blue). A simple rule-of-thumb decision was used to identify 

the most strongly associated SNPs: BF=15 and BF=20. As an alternative, it is also 

possible to use the PODS to calibrate the BF metric, in the same way as for the XtX 

(see Leroy et al. [6]).  

 

 

Manhattan plots showing chromosome positions of the associated SNPs (Fig. 

22) reveal clusters of associated SNPs in some genomic regions, particularly on 



 

chromosomes 1, 9, 10 and 12. Such investigations can lead to the identification of 

important genes for local adaptation possible, for example here adaptations to 

cold/warm conditions or drought/waterlogging. It is however crucial to keep in mind 

the following statement when interpreting the results: correlation does not imply 

causation. GEA and GPA analyses can provide ecologically meaningful information 

but these analyses are also prone to over-interpretation and storytelling (e.g. [74]). 

 

  

Fig. 22: Manhattan plots showing the chromosome positions of the SNPs exhibiting 

elevated Bayes Factors (BF) as detected using BayPass. Significant SNPs in Fig. 20 

are shown in colors. To facilitate readability, only SNPs with XtX > 15 and BF > 15 

for either the mean annual temperature covariable or mean annual precipitation sums 

are shown.  

 

4. Notes 

 

Note 1: Taking into account linkage disequilibrium 

For several analyses (e.g. PCA, clustering methods) it is important to note that 

the linkage disequilibrium (LD), the non-random association of alleles within a 

genome between a given locus and its genomic neighborhood, is an important factor 

to control for. For species with a relatively limited extent of LD across the genome (in 

general native species with a high genetic diversity), this bias is expected to be 

limited, but can become substantial for some species, particularly domesticated ones. 

The use of SNP pruning methods (e.g. SNPrune [75]) is currently being increasingly 

used for that purpose. We recommend using these methods. Advices on how to use 

these methods are available on the github repository. 

 

Note 2: Beyond TreeMix, demographic inferences 

It is also important to note that TreeMix (#3.3.4) fits single admixture pulses 

assuming homogeneous gene flow along the genome. This assumption is likely to be 



 

violated because migration is expected to be impeded at some genes maintaining 

genetic differences between hybridizing populations (e.g. [33] for empirical evidence). 

As a consequence, Treemix provides a good way to investigate potential migration 

events, but the exact direction of gene flow and the intensity of the migration edges 

should be interpreted with some caution. Some more advanced modeling approaches, 

albeit computationally intense, can decipher the evolutionary history of the 

investigated species with more confidence. These methods can explicitly account for 

heterogeneous migration rates (i.e. presence of barriers to gene flow). These methods 

provide considerably stronger statistical support for migration between populations, as 

well as temporal changes in effective population sizes, e.g. Approximate Bayesian 

Computation (ABC [33,76]) or dadi [32]. A growing number of empirical studies have 

used the former (e.g. [76-77]), the latter (e.g. [78-79]) or both methods (e.g. [80]).  

Deciphering the evolutionary history of a given species is an important step, 

because demography can generate a substantial background noise weakening genome 

scan analyses [81]. To perform robust identification of variants under selection (or 

variants in close vicinity), one of the ongoing challenges is to better take into account 

the evolutionary history of the population. Extensive simulations under the inferred 

most-likely evolutionary scenario can provide an accurate distribution of the expected 

differences in allele frequencies (e.g. FST, XtX or similar), thereby allowing the 

identification of variants under selection among loci deviating from these 

demographic expectations. Some early attempts to explicitly taking into account the 

inferred demography to scan genome for selection have recently emerged (e.g. 

[61,78,82-83]). In future, we suspect the emergence of new methods inferring at once 

the most-likely demographic scenario and variants departing from neutrality assuming 

this scenario.  
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